
Model Checking Extended Computation Tree Logic

Daniel Horgan

May 30, 2011

Abstract

Computation Tree Logic is widely used for modelling the behaviour of simple systems
over time, but its expressive power is limited. More powerful logics such as CTL*
and the modal mu-calculus have the disadvantage that their model-checking problems
are comparatively intractable, and they can be unintuitive. A recent contribution by
Axelsson et al. introduces the `Extended CTL' family of logics, in which the Until and
Release operators of CTL are parameterised by various classes of automaton. This has
the advantage of increasing the expressive power of the logic, whilst (in the case of
pushdown automata) preserving the tractability of model checking. Using algorithms
based on those described in the paper, this project implements (to the best of my
knowledge) the �rst concrete system for model checking CTL[PDA, DPDA], the logic
in which both operators are re�ned by pushdown automata, which are deterministic in
the case of Release. As well as a robust and tested core checking procedure, we provide
a set of commands for loading and displaying automata, systems and formulas. It is
possible to check both regular and pushdown systems, and checking a �xed formula is
possible in time quadratic in the size of the system and sizes of the automata used.

1

Contents

1 Introduction 4

2 Background 5

2.1 Extended Computation-tree logic . 6
2.2 Model Checking . 6
2.3 Programs as Pushdown systems . 7

3 Requirements 7

3.1 Correctness . 7
3.2 Usability . 7
3.3 E�ciency . 8
3.4 Integration . 8

4 Design 8

4.1 Systems and Automata . 9
4.2 Con�guration Space . 9
4.3 Input . 10

4.3.1 Regular Expressions . 10
4.4 User interface . 11
4.5 Environment . 11
4.6 Showing objects - text . 11
4.7 Showing objects - GraphViz . 11
4.8 Model checking algorithm . 12

4.8.1 Basic clauses . 12
4.8.2 Until . 12
4.8.3 Release . 13

4.9 WPDS Wrapper . 16
4.9.1 Complexity . 17

5 Testing 17

5.1 Unit tests . 17
5.2 Black Box tests . 18

6 Application to Checking Java Programs 20

7 Conclusions 22

7.1 Summary . 22
7.2 Project Evaluation . 23
7.3 Further work . 23

7.3.1 Features . 23
7.3.2 Optimisation . 23
7.3.3 Integration . 24

8 Acknowledgements 24

A User Manual 25

A.1 Compilation . 25

2

A.2 MCECTL-REPL . 25
A.3 Input Language . 26
A.4 Conversion from JimpleToPDSolver output 28

B Code Listings 28

3

1 Introduction

Automatic formal veri�cation of programs is an important topic in computer science, be-
cause it is di�cult to evaluate correctness properties of complex programs manually. One
of the main approaches is based on model checking : relevant aspects of the behaviour of
a program are represented as an abstract logical model, and the program speci�cation is
formulated as a set of formulas of a corresponding logic. By checking whether the model
satis�es the formulas, we can discover whether the program meets the speci�cation they
embody.

Many di�erent logics have been developed and used in this way; amongst the most popular
have been the temporal logics CTL and LTL. Their formulas are evaluated over labelled

transition systems: such systems consist of a �nite set of states at which various propositions
may hold, together with rules specifying the possible movements between them.

While both of these logics are useful and well-studied, they are unable to express many of
the more complicated properties that we may wish to check. Moreover, labelled transition
systems cannot directly be used to represent programs with in�nitely many states. Since we
wish to permit software with unbounded recursion, this is a severe limitation. For example,
consider the case of a shared resource whose lifetime is controlled by reference-counting.
We wish to check that the count is decremented exactly the same number of times as it is
incremented, and that the count does not reach zero before it is safe for the resource to be
released. Since the count may legitimately become arbitrarily large, a �nite state system
cannot be used to track this property.

More powerful logics have their own problems.1 The model checking problem for CTL* is
PSPACE-complete [1] [10]. Checking modal mu-calculus formulas on pushdown systems is
EXPTIME-complete [11] { while strong steps have been made towards solving this e�ciently
[7], the logic is also frequently unintuitive and is unable to express non-regular properties.

To address these issues, Axelsson et al. have developed a group of new logics in which CTL
is extended by classes of automata (or, equivalently, of formal languages). [1] Automata
associated with a formula can re�ne the path quanti�ers of CTL such that it is possible to
specify such properties as `there exists a path where p holds at every second step'. This is an
example of a regular property, since the language of paths of even length can be accepted by a
deterministic �nite automaton (DFA). Properties from elsewhere in the Chomsky Hierarchy
can be used depending on the classes of automaton permitted in a given CTL-extension
{ for example, equipping the path quanti�ers with pushdown automata (PDA) allows the
speci�cation of context-free properties. The logic in which existential Until formulas may
be re�ned by automata from a class A and Release from B is written CTL[A;B]. For a
more detailed explanation of the semantics of Extended CTL, see the Background section
(or, indeed, the original paper [1]).

Most interestingly from a veri�cation standpoint, the investigation yielded some promising
complexity results for certain Extended CTL model checking problems. In particular, it
was shown that CTL[PDA, DPDA]2 was in P.

1A detailed justi�cation for Extended CTL is given by Axelsson et al. (2010), upon which this summary
is based.

2A DPDA is a deterministic pushdown automaton.

4

As well as being computationally e�cient, this technique is relatively intuitive. Many
programmers have a good understanding of regular expressions and context-free grammars,
but the �xed-point operators which lend the modal mu-calculus its power are likely to be
unfamiliar.

At least in theory, then, CTL[PDA, DPDA] has good potential as a practical logic for
software veri�cation. For this reason, and to determine to what extent this is borne out in
practice, the primary aim of this project was to create a concrete, working implementation
of the model checking algorithms described in Axelsson et al.

To this end, an input language was de�ned for specifying pushdown and non-pushdown
automata and systems, as well as extended CTL formulas. A set of commands is provided
for interacting with these objects, and in particular for checking formulas against systems.
This is possible both when the pushdown component is in the automaton and when it is in
the transition system.

The report is structured as follows. We formally de�ne the syntax and semantics of
CTL[A;B], based on the description in the paper. We also recall the algorithms for model
checking the Until and Release clauses set out therein, and elaborate on them with some
thought to implementation. We see briey how the logic can be used for verifying programs,
by representing control-ow with pushdown systems.

Next we analyse the requirements for the concrete implementation, followed by explaining
and justifying the design of the system in detail. We cover the strategies used for testing,
and an example. Finally, we use the system to check a Java program, and conclude with
some thoughts to future work.

We also include a concise user manual, and listings of some of the project code.

2 Background

In all of the exposition that follows, let Prop be a countably in�nite set of proposition
variables, let � be a �nite set of action names, and let � be a �nite set of stack symbols.

We now recall some standard de�nitions.
De�nition 1. A deterministic �nite automaton (DFA) A is a 5-tuple (Q;�; �; q0; F) where
Q is a set of states, � is as established above, � : (Q � �) ! � is a (total) transition
function, q0 2 Q is the initial state, and F is the set of accepting states. We write s

a
�! s0 if

((s; a); s0) 2 �. The accepting language of the DFA is de�ned as L(A) = fa1a2:::an 2 �� :

9 a path q0
a1�! q1

a2�! : : :
an�! qn for some q1 : : : qn 2 Q with qn 2 Fg.

De�nition 2. A labelled transition system (LTS) is a triple T = (S;!; l), where S is a set
of states, !� S���S is the transition relation, and l : S ! 2Prop is a labelling function.
A path in the LTS is a sequence � = s0; a1; s1; a2; s2; : : : where si 2 S and ai 2 � such that

si
ai+1
���! si+1 for each i 2 N, and such that � is in�nite or ends in some sn which is not the

head of any transition rule.
De�nition 3. A pushdown automaton (PDA) A is a 6-tuple (Q;�;�;�; q0; F) where Q
is a set of states, � and � are as established above, � � (Q � � � �) � (� � ��) is a
set of pushdown transition rules, q0 2 Q is the initial state, and F is the set of accepting
states. We write hs; i

a
�! hs0; 0i if ((s; ; a); (s0; 0)) 2 �. The accepting language of

5

the PDA is de�ned as L(A) = fa1a2:::an 2 �� : 9 a path hq0; �i
a1�! hq1; 1i

a2�! : : :
an�!

hqn; ni for some q1 : : : qn 2 Q with qn 2 F and 1 : : : n 2 ��g. If � is a total function
(Q� �� �)! (�� ��) then we say the PDA is deterministic { it is a DPDA.
De�nition 4. A pushdown system (PDS) is a 4-tuple P = (S;�;!; l) where S is a set
of states, � is as above, !� (Q � � � �) � (� � ��) is a set of pushdown transition
rules, and l : S � � ! 2Prop is the labelling function. The PDS is deterministic if !:
(Q � � � �) ! (� � ��) is a total function. A path in the PDS is a sequence � =

hs0; 0i; a1; hs1; 1i; a2; hs2; 2i; : : : such that hsi; ii
ai+1
���! hsi+1; i+1i for each i 2 N, and

such that � is in�nite or ends in some sn which is not the head of any transition rule.

2.1 Extended Computation-tree logic

De�nition 5. The syntax for an CTL[A;B] formula is de�ned recursively as follows:

� ::= qj� ^ �j:�jE(�UA�)jE(�RB�)

where q 2 Prop, A 2 A, and B 2 B.
De�nition 6. Formulas are evaluated with respect to states of an LTS T = (S;!; l),
according to the following semantics:

T ; s j= q i� q 2 l(s) T ; s j= q i� q 2 l(s)
T ; s j= �1 ^ �2 i� T ; s j= �1 and T ; s j= �2
T ; s j= :� i� T ; s 6j= �

T ; s j= E(�1U
A�2) i� 9 a path � = s0; a1; s1; : : : with s0 = s and 9n 2 dom(�) s.t.

a1 : : : an 2 L(A) and T ; sn j= �2 and 8i < n : T ; si j= �1
T ; s j= E(�1R

A�2) i� 9 a path � = s0; a1; s1; : : : with s0 = s and 8n 2 dom(�) : a1 : : : an 62
L(A) or T ; sn j= �2 or 9i < n s.t. T ; si j= �1

If s 2 T and T ; s j= � we say that s satis�es �.

In fact, it is also possible to evaluate formulas w.r.t. con�gurations of a PDS,
using directly analogous semantics { simply consider paths between con�gurations instead
of just between control states.

2.2 Model Checking

Given a formula and a labelled transition system, the global model checking problem consists
of determining which states of the system satisfy the formula.

As with standard CTL, the global model-checking problem for Extended CTL admits a
polynomial-time dynamic programming solution. Speci�cally, the problem of checking a
formula can be broken into sub-problems of checking each of the sub-formulas. In dynamic
programming, one achieves an e�cient solution by solving the sub-problems in topological
order; in our case this simply means checking the sub-formulas in a `bottom up' manner.

For the clauses other than Until and Release, obvious checking algorithms follow directly
from the semantics. Checking path quanti�ers in polynomial time is more complicated, and

6

it is this that makes up the bulk of the project. Axelsson et al. suggest algorithms for these
clauses [1] { we shall recap and expand upon these in the Design section.

It turns out to be the case that it is possible to use an almost identical method for checking
a CTL[DFA,DFA] formula against a deterministic PDS as for checking a CTL[PDA,DPDA]
formula against a regular LTS. The only di�erence is in the details of how we construct the
product system when checking the path quanti�ers. Since both of these options are useful,
both are implemented by the model checker.

2.3 Programs as Pushdown systems

CTL extended by pushdown automata is an e�ective choice for veri�cation of real programs
because the control ow of a recursive program can naturally be modelled by a pushdown
system. In this case, the stack of the pushdown system corresponds directly to the call
stack of the program.

3 Requirements

The aim of this project was to create a complete system for model-checking Extended CTL
for the pushdown (i.e. context-free) case.

A number of key requirements were identi�ed, and these goals helped to direct the design
process.

3.1 Correctness

The �rst priority for the system was { perhaps obviously { that of correctness. Since one
of the primary applications of model-checking in general is the analysis and veri�cation of
other programs, it is vital that an implementation produce accurate results. Mainstream
adoption of formal veri�cation methods has been slow [9], and if these techniques are ever
to be more widely used, they must in the �rst place be reliable.

The key algorithms used should therefore be proven correct, and care must be taken to en-
sure that the implementation reects the abstract version. Ultimately though, establishing
con�dence in the checking procedures will require extensive testing.

3.2 Usability

Using the system should be simple and practical. The system must accept problem speci�-
cations in a clear format, and produce results in an intelligible manner. If a state is found
to satisfy an existence formula, a trace should be provided as evidence. This is important
for the software veri�cation use case, since the knowledge that a program does not meet a
speci�cation is not very useful without some indication as to why this is.

7

3.3 E�ciency

Less important than accuracy, but nevertheless desirable is that the system should be
computationally e�cient.

Naturally, the size of the models which can be checked will be limited by the amount of
memory available. Since real-world applications of the system will involve models generated
from analysis of potentially large pieces of software, we may desire to check very large
systems. Therefore, the algorithms used should be space-e�cient, and the implementation
should not be wasteful.

Time-e�ciency is of equal importance: since the key advantage of formal veri�cation is that
it saves time by �nding problems which would otherwise only be caught by extensive testing,
a tool's usefulness can easily be undermined if it takes a long time to produce results.

3.4 Integration

A secondary goal is to provide some means of applying the model-checker to pushdown
systems modelling the control ow of real programs. Most software is complex enough that
manually creating such systems would be neither practical nor reliable. Hence there is a
need for a way of producing the appropriate pushdown system automatically from program
source code.

4 Design

Note: the system implementation is given the name MCECTL (Model Checker for Ex-

tended CTL), and we use this name to refer both to the system as a whole and the core

model checking module.

The design process essentially followed a top-down model. It was clear from the beginning
that certain speci�c sub-systems would be required:

� Input: some way of reading model checking problems into the system

� Core: the actual model checking algorithms

� Output: printing results and traces obtained from checks

The data structures used in the checking process would be central to all of these systems. In
particular, since the model checking algorithms are highly automata-theoretic, it was clear
that an important component of the system would need to be a set of automata classes
with support for certain necessary operations. In addition to basic storage of and access to
states and rules, three more signi�cant automata-related features were required:

� The loading of automata explicitly given in text form

� The construction of a minimised DFA from a regular expression

� The computation of the predecessor con�gurations of a set of con�gurations in a
pushdown system

8

Unfortunately, investigation found no single pre-existing library of automata classes which
would ful�ll all of the necessary requirements. However, it was found that at least the latter
two of the above features were already implemented { by two separate libraries. libfa3 is
provided as part of theAugeas project, and is able to create DFAs from regular expressions.
wpds4 is used as part of the MOPED model checker, and is able to e�ciently compute
predecessor con�gurations in pushdown systems.

Thus it was decided that the best approach would be to develop new classes for the various
types of automata and systems, and use the various libraries by converting between the
di�erent representations as necessary. This was perhaps less elegant than an entirely self-
contained solution would have been, but was a pragmatic approach { since the focus of the
project was the new model checking algorithm, it made sense to use robust and well-tested
external code where possible, rather than re-implement these algorithms from scratch.

With this in mind, C++ was chosen for this project because it allows for linkage with libfa

and wpds (which are written in C) whilst permitting an object-oriented approach.

4.1 Systems and Automata

Using C++ templates, it was possible to create the four necessary automaton5 types (DFA,
PDA, LTS, PDS) as a single class (with two template parameters). The class is param-
eterised by state type and action type. Using the plain State class results in automata;
using KripkeState produces systems, with labelled states. Similarly, RegularAction and
PushDownAction provide the di�erent types of transition rule used.

This approach reduced code duplication and increased exibility; for example, to create
the product system used for the Until checking, it was su�cient to change the state type
to a new ProductState class, acting as a pair (State, KripkeState) drawn from the
Cartesian product.

4.2 Con�guration Space

While the control states of the automata are stored explicitly, the actual con�gurations
are not6; instead, an automaton has an associated `con�guration space', which is used
whenever it is necessary to directly make reference to con�gurations. The con�guration
space stores the names of control states and of stack symbols, and associates each pair
thereof with a unique integer. This ID number is used to refer to states and con�gurations
in the transition rules and elsewhere, so that potentially long name strings do not need to
be copied unnecessarily. It also simpli�es the construction of product systems.

3http://augeas.net/libfa/
4http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
5For brevity, the term `automata' is taken here also to include transition systems
6Here `con�guration' refers to a combination of a control state and a top stack symbol.

9

4.3 Input

The input language is tokenised and parsed using ex and Bison respectively. See the
Appendix for a detailed explanation of the input language. The Boost.Spirit parsing
framework was considered as an alternative to the ex/Bison combination. This might
have resulted in a more elegant input system; however ex/Bison had the advantage of
being well-known and comparatively easy to use, once set up. Their idiosyncrasies are also
better documented than those of Spirit.

An Abstract Syntax Tree is constructed recursively during the parse; ultimately the input
text is transformed into a series of Command objects. This helps to modularise functionality,
and means that the actual execution of the commands can be delayed. As well as generally
adding exibility, this decision means that it is possible to ensure de�nitions are well-formed
before they are undertaken.

In the case of formulas, the intermediate representation as an AST has another advantage:
it a�ords an opportunity to rewrite clauses into another form. This allows us to provide
model checking procedures for only a minimal portion of the logic; other types of formula
are converted to this according to the usual equivalences.

In particular, checking procedures are implemented for the base cases true and false, propo-
sitional variables, negation, conjunction, E(�U) and E(�R).

Disjunction and implication are handled by transforming the AST as follows:

� _ � :(:� ^ :)

�! � :(� ^ :)

By a similar duality, we can de�ne the universal path quanti�ers: [1]

A(�U) � :E(:�R:)

A(�R) � :E(:�U:)

and for EX, AX and similar { see Axelsson et al. for details.

The conversion from AST to fully instantiated object is carried out by the DeclareAutomatonCommand,
DeclareRegexCommand and DeclareFormulaCommand classes. These each use the Visitor
pattern to iterate over the structure of the AST of the relevant object and incrementally
construct the full object. Checks for validity are performed during this process.

4.3.1 Regular Expressions

Since it can be tedious to de�ne automata manually, it is also possible to specify a DFA using
a regular expression. The regex is parsed into its own AST { as with the other structures {
but when interpreted, libfa is used to construct a DFA with the name given. The decision
to use libfa was taken because to reimplement the necessary minimisation algorithms would
have been time-consuming and potentially less robust. However, libfa naturally uses its own
representation for automata and regular expressions, so we need to convert between them
to retrieve the results. This is done by the DeclareRegexCommand class.

10

4.4 User interface

Given the usability requirements, a traditional read-eval-print loop was an obvious choice
as a front-end to the system. The REPL makes use of the GNU readline library, so
that standard keyboard shortcuts can be used for such operations as retrieving previously
entered commands from the history, and auto-completing �lenames.

A full graphical user interface would have provided an even greater level of usability, but
was judged to be beyond the scope of this project. However, since the main core of the
model checker is built as a separate (static) library, it would be easy to extend the system
with an alternative front-end.

A typical session involves loading system and formula de�nitions from a �le, followed by
specifying checks to run against these objects. It is also possible to display the automata
and systems that have been loaded.

The interpretation of the command text, whether input directly or loaded from a �le,
is handled by the CommandParser, which uses ex and Bison to convert input text into
Command objects. These objects are executed by the CommandProcessor, which maintains
a reference to the Environment.

4.5 Environment

The environment is used to store all of the automata, systems, and formulas that have been
loaded at any given point in the program. It also stores the results of model-checks, so that
it is only necessary to check a formula once { to recall the results again, they are simply
looked up in the environment. This has the potential to save computation time if the user
wishes to check several similar formulas against a system. It also allows the user a greater
degree of interactivity; it's possible to de�ne and check a new formula during a session,
without needing to reload the transition system.

4.6 Showing objects - text

The :show command has two purposes { with no parameter, it outputs the names of all
automata, systems, and formulas that have been loaded; if provided with the name of an
object, it will output a textual representation of that object via the ToString() method.
These objects all inherit from the Showable abstract class.

4.7 Showing objects - GraphViz

The :xshow command provides a way of displaying loaded automata and systems graphi-
cally. It achieves this by obtaining aGraphViz `dot' format representation of the requested
object via the ToDot() method, and piping the text to the dot program. dot must be in the
system PATH for this to work. This is somewhat rudimentary, but the feature is extremely
helpful and contributes a great deal to usability.

11

4.8 Model checking algorithm

The dynamic programming aspect of the procedure is handled in a fairly standard way:
we store a `table' of results for formulas in the Environment, and the entries are �lled in
on demand. (In fact, for fast lookup, results are stored in a CheckResults object, which
contains a map from unique formula ID to the actual Result object.) This implies a
recursive approach to iterating over sub-formulas.

We use the Visitor pattern once more to traverse the structure of the formula being checked.
This allows us to break up the code with a separate method for checking each type of clause,
and the check action is dispatched according to the class of the formula.

4.8.1 Basic clauses

Checking the non-quanti�er clauses is straightforward. The general process is to �rst retrieve
the results for any sub-formulas (these will be calculated, recursively, if necessary) { and
then to iterate over the states of the system being checked, combining the corresponding
results as appropriate.

For example, in pseudo-code, the procedure for checking a Conjunction clause � = x ^ y is
as follows:

x_results = Check(x)

y_results = Check(y)

phi_results = []

for i in Configurations(system):

phi_results[i] = x_results[i] && y_results[i]

SetResults(phi, phi_results)

In fact, all of the clauses follow this basic pattern, but they di�er in how they use the
sub-results. (Base cases, such as True and PVar, do not perform sub-checks, rather they
simply �ll in the results, as you would expect.)

4.8.2 Until

Suppose we wish to check E(xUAy) against an LTS T = (S;!; l), whereA = (Q;�;�; �; q0; F).
Axelsson et al. reduce the problem to a reachability check against a PDS constructed as a
product of A and T . [1]

Speci�cally, we construct AT = (Q � S;�;!; l) by h(p; s); i
a
�! h(q; t); wi i� 9a 2 � such

that s
a
�! t and hp; i

a
�! hq; wi and x 2 l(s).

This PDS encodes the semantic requirement for the system and the automaton to be `run
in step' { recall that Until requires the existence of an alternating sequence of states and
actions, and also that the �rst sub-formula, x, holds at each point.

In addition to this, however, a valid path's actions must be accepted by the automaton,
and must reach a state of the system in which the second subformula holds. The next step,

12

De�nition 7. Given a PDS P, a P-automaton is a 5-tuple (Q;�; �; P; F) where Q is a set
of states, � is the stack alphabet as usual, � � (Q��)�Q is a transition function, P � Q

is a set of initial states, and F � Q is a set of accepting states. We de�ne the acceptance
condition as follows:
Let !� Q� �� �Q be the smallest relation such that

� q
�
�! q for all q 2 Q

� (hq; i; q0) 2 � =) q

�! q0, and

� (q
w
�! q0 and q0

�! q00) =) q

w
��! q0

The automaton accepts con�guration hp; wi of P if p
w
�! q for some p 2 P and q 2 F .

Figure 1: P-automaton de�nition, based on Esparza et al. 2000

then, is to consider the set of con�gurations of the product system in which these criteria
are satis�ed:

R := fh(p; s); wi : p 2 F and y 2 l(s); w 2 ��g

Finally, observe that a valid Until path from a state s exists i� there is a path in the
product system from h(q0; s); �i to one of the con�gurations inR (since automaton simulation
begins with the initial state and an empty stack). This holds exactly if h(q0; s); �i is in the
predecessor con�gurations of R. The proof is straightforward { see Axelsson et al. 2010 [1]
for the details. We shall refer to h(q0; s); �i as the `bottom con�guration' for s.

The �nal requirement, then, is to �nd an e�cient way of computing this set of predecessor
con�gurations: the con�gurations of the product system from which, by repeatedly applying
transition rules, it is possible to reach a con�guration from the original set. Fortunately,
this is well-studied { Axelsson et al. refer to the original method of Bouajjani et al. [3]
For the implementation, though, we apply wpds, which uses an improved method due to
Esparza et al. [6] This process is involved, but the outline is as follows: the initial set
of con�gurations is represented symbolically by a new `AT -automaton'7 (See �g. 1), to
which a pre* algorithm is applied. pre* is a saturation process { it adds new edges to the
AT -automaton until it accepts all of the predecessors.

Creating an automaton which accepts the set R is straightforward. De�ne a AT -automaton
R = (Q � S;�;�R; PR; FR) with � = f(h(p; s); i; (p; s)) : (p; s) 2 Q � S with p 2 F and
y 2 l(s)g, and PR = FR = Q�S. It is clear from the de�nition of the acceptance condition
that R accepts R.

Applying the pre* procedure of wpds yields Rpre� : to check whether a state s satis�es the
Until formula, we simply check whether its bottom con�guration is accepted by Rpre� .

In the case that it is, we can use the wPathFind method of wpds to retrieve a witnessing
trace { refer to the source code for details.

4.8.3 Release

In Axelsson et al. (2010) the problem of checking E(xRAy) against an LTS (S;!; l) is
reduced to evaluating the LTL formula Fpb on a constructed pushdown system AT = (Q�
S [fg; bg;�;�; l0), where

7In the terminology of Bouajjani et al. this is a AT multi automaton.

13

1. Check both subformulas
2. Explicitly construct the product system AT

3. Construct a AT -automaton recognising the con�gurations which are accepting and
also satisfy the second sub-formula.

4. Apply the pre* algorithm to the automaton.
5. For each state of the system: check whether the new automaton accepts the state's

`bottom con�guration'.

Figure 2: Until checking algorithm

l0(s) =

8<
:

fpbg if s = b

fg if s = g

l(s) otherwise

and

((p; s);)!

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(g; �) if s 2 l0(x) and
(p 2 F implies s 2 l0(y))

(b; �) if p 2 F and s 62 l0(y)

((q; t); w) if neither of the above match
and there exists a 2 � s.t.

s
a
�! t and (p; a;)! (q; w)
for some 2 �; w 2 ��

We refer to this system (as we do in the code) as a ReleaseSystem, to distinguish it from
the ProductSystem used in the Until checking.

To check the LTL formula, we use a method based on the one described in Esparza et al.
(2000) [6].

1. Construct a B�uchi automaton B with initial state q0 corresponding to the negation of
the formula

2. Compute the B�uchi pushdown system BP as the product of B and the pushdown
system

3. Compute the set of repeating heads R of BP
4. Construct an automaton A accepting R��.
5. Compute pre�(R��)

A con�guration hp; wi violates the formula i� Apre� accepts h(p; q0); wi.

Figure 3: Checking an LTL formula against a pushdown system: method from Esparza et
al. (2000) [6]

But since we only need to be able to check the speci�c type of LTL formula that occurs
here, it is possible to make some simpli�cations.

The �rst step in checking Fpb is to construct a B�uchi automaton corresponding to the
negation of the formula. This will have one state, which is accepting, and has a self-loop
for every valuation except those in which pb is true.

14

B := (�B; QB; �B; q0B ; FB)

where
�B := 2Prop QB := f�g

�B := f�
v
�! � : v 2 2Propnfpbgg q0B := �

FB := f�g

(`*' is used as the name of the single state, since this is arbitrary)

Following the standard de�nition [6], the product of this B�uchi automaton with our push-
down system, then, is a B�uchi pushdown system given by:

BAT = ((Q� S [fg; bg)�QB;�;�
0; G)

where
G = f(p; �) : p 2 Q� S [fg; bgg

and
h(p; �); i ! h(p0; �); wi 2 �0 i� hp; i ! hp0; wi; �

�
�! � and � � l0(hp; i)

Noting that �
�
�! � i� � � Propnfpbg we obtain

h(p; �); i ! h(p0; �); wi 2 �0 i� hp; i ! hp0; wi; and Propnfpbg \ l
0(hp; i) 6= ;

or equivalently

h(p; �); i ! h(p0; �); wi 2 �0 i� hp; i ! hp0; wi; and fpbg 6= l0(hp; i)

But note further that fpbg 6= l0(hp; i) i� p 6= b by construction of the pushdown system. In
fact, we see that there are no rules with b as a head state { so �nally we simply have:

h(p; �); i ! h(p0; �); wi 2 �0 i� hp; i ! hp0; wi

and clearly in fact BAT
�= AT via (p; �) 7! p.

The next step is to compute the repeating heads of BAT .

This is performed in WPDSRelease::ComputeRepeatingHeads(). Following Esparza et al.
2000 once more, we achieve this by computing the strongly-connected components of a head
reachability graph. However, the construction of this graph is simpli�ed by the observation
that all of the states of the B�uchi product system are accepting.

We also use the fact that in our implementation, all transition rules must be either pop,
rewrite, or push actions. We use the Boost.Graph library to store the graph.

Once we have the reachability graph, we use Tarjan's algorithm to �nd the strongly-
connected components { Boost.Graph has an implementation of this. For a head to be
repeating, it needs to be in a strongly-connected component which contains an edge. This
holds if the component has multiple vertices, or if it has a single vertex with a self-loop.
We also add vertices which have no successors in the reachability graph, excluding b. This
gives us a set of head con�gurations R from which it is possible to avoid ever encountering

15

1. E = ;
2. R = pre�(fhs; �i : s 2 (Q� S [fg; bg)g)
3. For each rule in �:
4. Case hp; i ! hp0; �i: // Pop rule
5. E = E [f(hp; i; hp0; �i)g
6. Case hp; i ! hp0; 0i: // Rewrite rule
7. E = E [f(hp; i; hp0; 0i)g
8. Case hp; i ! hp0; 000i: // Push rule
9. E = E [f(hp; i; hp0; 00i)g
10. For all p00 such that (p0; 00; p00) 2 R :
11. E = E [f(hp; i; hp00; 0ig
12. return E

Figure 4: Constructing the reachability graph e�ciently

the control state b. If it is possible to reach one of these con�gurations, clearly Fpb does not
hold.

It remains only to compute the predecessors of the con�gurations whose heads are in R.
We can do this by applying pre� to an automaton which accepts R:��. This is implemented
in WPDSRelease::ConstructFA().

Hence our �nal algorithm is (in pseudo-code):
1. Check the sub-formulas
2. Construct the Release pushdown system, as above
3. Construct an automaton recognising the `stack bottom' con�gurations
4. Compute their predecessor con�gurations
5. Create a reachability graph
6. Find its strongly connected components
7. A vertex is a repeating head if it is in a component with an edge, or it has no successors.
8. Construct an automaton recognising the repeating heads
9. Compute their predecessor con�gurations
10. For each state, check whether its bottom con�guration is a predecessor

Figure 5: Release checking algorithm

4.9 WPDS Wrapper

Since libwpds is written in C and so has a non-object oriented interface, a wrapper class was
used to simplify the code and prevent unnecessary access to the internal data structures.
The library must also be initialised and de-initialised before and after use; using a wrapper
means this can be performed conveniently via the constructor/destructor methods. In the
case of release checking, it is necessary to compute two sets of predecessor con�gurations,
so two instances of the wrapper class are used simultaneously { for this reason, a count of
the active instances of libwpds is kept, so that initialisation and de-initialisation need only
be performed once.

16

4.9.1 Complexity

Consider an Until clause, E(�1U
A�2). Let nA be the size of the state set of A, and rA the

number of rules. Similarly let nS be the number of states of the system being checked, and
rS the number of rules.

Constructing the product system takes time proportional to nAnS j�j+ rArS . Creating the
automaton to recognise R takes time nAnS j�j. Computing pre� takes rArSn

2
An

2
S j�j

2. (See
Esparza et al. 2000 [6]) Checking which con�gurations are recognised by the new automaton
takes n2Sn

2
Aj�j in the worst case. Hence the complexity is dominated by calculating the

predecessor con�gurations; Until checking is O(rArSn
2
An

2
S j�j

2)

Now consider Release; E(�1R
A�2), and let us use the same notation. Constructing the prod-

uct system is again nAnS j�j+ rArS time. Constructing the automaton that recognises the
bottom con�guration for each control state takes time nAnS . Computing their predecessors
takes time n2An

2
SrArS . Creating the reachability graph takes r2Ar

2
S j�j

2 in the worst case
(i.e. when all rules are push rules). Finding the SCCs is O(jV j + jEj) so is bounded by
nAnS j�j + n2An

2
S j�j

2. Retrieving the repeating heads is time proportional to nAnS j�j (the
maximum number of components), and constructing an automaton to recognise them is
then nAnS j�j

2. Computing its predecessors takes n2An
2
SrArS since the size of the automa-

ton won't be larger than the number of control states of the product system, which has at
most of the order rArS rules. Finally, checking which con�gurations are predecessors takes
no longer than n2Sn

2
Aj�j.

We can see that the overall worst-case complexity for Release is then O(r2Ar
2
Sn

2
An

2
S j�j

2).

For any formula � then, which refers to automata A1; A2; : : : ; An, checking � against a
system with states S and rules � has worst-case time complexity:

O(j�jj�j2jSj2j�j2
nY
i=1

jAiQ j
2jAi� j

2)

5 Testing

Since correctness of the checking procedure is of utmost importance, a systematic test
strategy was developed. This included unit testing of some subsystems, as well as extensive
black-box testing of the whole system.

For the unit tests, the Boost Unit Test Framework was used, since this granted a direct
interface to the classes being tested. The black-box tests, in contrast, concerned only the
input and ultimate output. For this reason, a separate script was written in Perl, which
sends problems to the model checker via standard input, and then veri�es that the received
output matches the expected output. This script uses the standard Perl Test::More test
harness.

5.1 Unit tests

Unit tests were used primarily for the part of the system which dealt with parsing. The tests
each checked that the AST resulting from parsing some string matched the expected one

17

(or failed to parse, if the string was invalid). These tests were helpful during development
for preventing regressions as new features were added.

Example:

test_case_t("FORMULA foo E(hungry U[dfa] eat) ",

"FORMULA foo [[PVAR hungry] UNTIL AUTOMATA dfa [PVAR eat]] "),

checks that an Until formula parses.

Example:

test_case_t("REGULAR foo (toast|coffee)* ",

"REGULAR foo [KLEENE [[ACTION toast] UNION [ACTION coffee]]] "),

checks a regular expression's AST.

See the appendix for a full list.

5.2 Black Box tests

The black-box tests are speci�ed in self-contained Perl hash objects, and are all evaluated
independently, using di�erent sessions of MCECTL. The results for each state are extracted
using a regular expression, and compared with those expected.

Example:

f
name => "2. LTS, five states, pushdown with one symbol",

formula => f name => "phi8", formula => "E(1 U[a8] p)" g,
system => f

type => "LTS",

name => "t13",

states => ['t0 : ' ,'t1 : ' ,'t2 : ' ,'t3 : ' ,'t4 : ' ,'t5 : p'],

rules => [

'a:t0->t1' ,'b:t1->t2' ,

'a:t2->t3' ,'b:t3->t4' ,'c:t4->t5'

]

g,
automata => [

f
type => "PDA",

name => "a8",

states => ['s1', '*s2'],

rules => [

'a: s1[_] -> s1[PUSH s]',

'b: s1[s] -> s1[POP]',

'c: s1[_] -> s2[REWRITE _]'

]

g
],

18

expected => f t0 => 1, t1 => 0, t2 => 1, t3 => 0, t4 => 1, t5 => 0g
g

This is one of the cases for testing Until checking.

The transition system:

t0 t1
a

t2
b

t3
a

t4
b

t5
c

where p holds at t5 only.

The pushdown automaton:

s1

a: _/s
b: s/_

s2
c: _/_

The formula: � = E(true RA p), where A is the above automaton.

It is clear that the automaton accepts the language f (ab)*c g. States t1, t3 and t5 have no
initial a-transition, so there can be no accepting path to a p-state from these. States t0, t2

and t4 do have such paths though, as (t0; s1)
a
�! (t1; s1)

b
�! (t2; s1)

a
�! (t3; s1)

b
�! (t4; s1)

c
�!

(t5; s2) in the product system.

Hence t0, s2, s4 are expected to be satisfying, whereas the other states are not. This is
speci�ed in the test case.

The results returned by the model checker are:

Results:

t0: T [<> s(s1,t0) --a--> <_> s(s1,t1) --b--> <> s(s1,t2) --a-->

<_> s(s1,t3) --b--> <> s(s1,t4) --c--> <> s(s2,t5)__]

t1: F

t2: T [<> s(s1,t2) --a--> <_> s(s1,t3) --b--> <> s(s1,t4) --c--> <> s(s2,t5)__]

t3: F

t4: T [<> s(s1,t4) --c--> <> s(s2,t5)__]

t5: F

so the test passes.

See the appendix for a full list of tests.

19

6 Application to Checking Java Programs

A similar project which performs this task is Matthew Hague's PDSolver8 [7]. The focus of
PDSolver is checking modal mu-calculus properties; however, it includes a JimpleToPD-

Solver tool for extracting pushdown control-ow graphs from Java programs. This tool
produces output in the format used by PDSolver; by combining it with a script for convert-
ing PDSolver problems to MCECTL ones, we can obtain a convenient way of applying the
model checker to real programs.

Example:

package ectl;

public class Files f

public static void open_handle() f g

public static void close_handle() f g

public static void main(String[] args) f
open_handle();

g
g

Output from JimpleToPDSolver, �ltered through convert.pl:

PDS jimple_pds f
STATE (csend[cpl_ectl_files__open_handle_v__5_5] :

csend,cpl_ectl_files__open_handle_v__5_5)

STATE (csend[cpl_ectl_files__main_aljava_lang_string_v__11_4] :

csend,cpl_ectl_files__main_aljava_lang_string_v__11_4)

STATE (csend[cpl_ectl_files__main_aljava_lang_string_v__10_1] :

csend,cpl_ectl_files__main_aljava_lang_string_v__10_1)

STATE (csend[cpl_ectl_files__main_aljava_lang_string_v__10_0] :

csend,cpl_ectl_files__main_aljava_lang_string_v__10_0)

STATE (csend[cpl_ectl_files__main_aljava_lang_string_v__10_3] :

csend,cpl_ectl_files__main_aljava_lang_string_v__10_3)

STATE (csend[cpl_ectl_files__main_aljava_lang_string_v__10_2] :

csend,cpl_ectl_files__main_aljava_lang_string_v__10_2)

STATE (csend[cplinit006] :

csend,cplinit006)

STATE (csend[_] :

csend,_)

STATE (csinit[cpl_ectl_files__open_handle_v__5_5] :

csinit,cpl_ectl_files__open_handle_v__5_5)

STATE (csinit[cpl_ectl_files__main_aljava_lang_string_v__11_4] :

csinit,cpl_ectl_files__main_aljava_lang_string_v__11_4)

STATE (csinit[cpl_ectl_files__main_aljava_lang_string_v__10_1] :

csinit,cpl_ectl_files__main_aljava_lang_string_v__10_1)

STATE (csinit[cpl_ectl_files__main_aljava_lang_string_v__10_0] :

csinit,cpl_ectl_files__main_aljava_lang_string_v__10_0)

STATE (csinit[cpl_ectl_files__main_aljava_lang_string_v__10_3] :

csinit,cpl_ectl_files__main_aljava_lang_string_v__10_3)

STATE (csinit[cpl_ectl_files__main_aljava_lang_string_v__10_2] :

csinit,cpl_ectl_files__main_aljava_lang_string_v__10_2)

STATE (csinit[cplinit006] :

8http://www.comlab.ox.ac.uk/matthew.hague/pdsolver.html

20

csinit,cplinit006)

STATE (csinit[_] :

csinit,_)

STATE (csq[cpl_ectl_files__open_handle_v__5_5] :

csq,cpl_ectl_files__open_handle_v__5_5)

STATE (csq[cpl_ectl_files__main_aljava_lang_string_v__11_4] :

csq,cpl_ectl_files__main_aljava_lang_string_v__11_4)

STATE (csq[cpl_ectl_files__main_aljava_lang_string_v__10_1] :

csq,cpl_ectl_files__main_aljava_lang_string_v__10_1)

STATE (csq[cpl_ectl_files__main_aljava_lang_string_v__10_0] :

csq,cpl_ectl_files__main_aljava_lang_string_v__10_0)

STATE (csq[cpl_ectl_files__main_aljava_lang_string_v__10_3] :

csq,cpl_ectl_files__main_aljava_lang_string_v__10_3)

STATE (csq[cpl_ectl_files__main_aljava_lang_string_v__10_2] :

csq,cpl_ectl_files__main_aljava_lang_string_v__10_2)

STATE (csq[cplinit006] : csq,cplinit006)

STATE (csq[_] : csq,_)

ACTION (a : csq[cpl_ectl_files__main_aljava_lang_string_v__10_2] ->

csq[REWRITE cpl_ectl_files__main_aljava_lang_string_v__11_4])

ACTION (a : csq[cpl_ectl_files__main_aljava_lang_string_v__10_1] ->

csq[REWRITE cpl_ectl_files__main_aljava_lang_string_v__10_3])

ACTION (a : csq[_] ->

csend[REWRITE _])

ACTION (a : csq[cpl_ectl_files__main_aljava_lang_string_v__10_1] ->

csq[REWRITE cpl_ectl_files__main_aljava_lang_string_v__10_2])

ACTION (a : csq[cpl_ectl_files__main_aljava_lang_string_v__11_4] ->

csq[POP])

ACTION (a : csq[cpl_ectl_files__main_aljava_lang_string_v__10_0] ->

csq[PUSH cpl_ectl_files__main_aljava_lang_string_v__10_1])

ACTION (a : csq[cpl_ectl_files__main_aljava_lang_string_v__10_3] ->

csq[POP])

ACTION (a : csq[cpl_ectl_files__open_handle_v__5_5] ->

csq[POP])

ACTION (a : csinit[_] ->

csq[PUSH _])

ACTION (a : csq[cplinit006] ->

csq[REWRITE cpl_ectl_files__main_aljava_lang_string_v__10_0])

g

If we add the following simple check:

DFA dfa {

STATE (*s1)

ACTION(a: s1 -> s1)

}

FORMULA phi1 {

E(1 U[dfa] csend)

}

:check(phi1, jimple_pds)

We get the results:

Results: {

<csend,cpl_ectl_files__main_aljava_lang_string_v__11_4>: T [<> s(s1,csend)]

<csend,cpl_ectl_files__main_aljava_lang_string_v__10_1>: T [<> s(s1,csend)]

<csend,cpl_ectl_files__main_aljava_lang_string_v__10_0>: T [<> s(s1,csend)]

<csend,cpl_ectl_files__main_aljava_lang_string_v__10_3>: T [<> s(s1,csend)]

<csend,cpl_ectl_files__main_aljava_lang_string_v__10_2>: T [<> s(s1,csend)]

<csend,cplinit006>: T [<> s(s1,csend)]

21

<csend,_>: T [<> s(s1,csend)]

<csend,cpl_ectl_files__open_handle_v__5_5>: T [<> s(s1,csend)]

<csinit,cpl_ectl_files__main_aljava_lang_string_v__10_3>: F

<csinit,_>: T [<> s(s1,csinit) --a--> <_> s(s1,csq) --a--> <_> s(s1,csend)]

<csinit,cplinit006>: F

<csinit,cpl_ectl_files__main_aljava_lang_string_v__10_2>: F

<csinit,cpl_ectl_files__main_aljava_lang_string_v__10_0>: F

<csinit,cpl_ectl_files__main_aljava_lang_string_v__10_1>: F

<csinit,cpl_ectl_files__main_aljava_lang_string_v__11_4>: F

<csinit,cpl_ectl_files__open_handle_v__5_5>: F

<csq,cpl_ectl_files__open_handle_v__5_5>: F

<csq,cpl_ectl_files__main_aljava_lang_string_v__11_4>: F

<csq,cpl_ectl_files__main_aljava_lang_string_v__10_1>: F

<csq,cpl_ectl_files__main_aljava_lang_string_v__10_0>: F

<csq,cpl_ectl_files__main_aljava_lang_string_v__10_3>: F

<csq,cpl_ectl_files__main_aljava_lang_string_v__10_2>: F

<csq,cplinit006>: F

<csq,_>: T [<> s(s1,csq) --a--> <> s(s1,csend)]

}

which indicate paths to the end state from various points in the program.

7 Conclusions

This project has successfully implemented a system for automated solution of the global
model checking problem for CTL[PDA,DPDA]. To the best of my knowledge, it is the �rst
concrete program for doing this.

7.1 Summary

The system includes a robust and usable infrastructure for de�ning and displaying regular
and pushdown automata and systems as well as Extended CTL formulas. This surrounding
infrastructure is su�ciently exible that it could potentially provide a good basis for model
checking of pushdown systems more generally.

A number of additional convenience features are provided: regular expressions allow a more
intuitive way to specify automata, and a conversion script is available for compatibility with
JimpleToPDSolver.

The core model checking procedure is, for a �rst implementation, e�cient { the worst-case
complexity for checking a �xed formula is quadratic in the product of the sizes of the system,
automata used, and the stack alphabet.

As well as the basic per-state satisfaction results, the algorithm produces witnessing traces
when this is relevant. The system has been thoroughly tested and is believed to produce
correct results.

22

7.2 Project Evaluation

On the whole, the project has been a success. The key algorithms have been implemented,
thoroughly tested, and shown to work in practice.

While the overall architecture is sound, there are elements of the design which could be
improved upon a little. Though the use of ID numbers to represent states and con�gurations
is well-advised, the approach in its current form can be confusing to the uninitiated, and it
would bene�t from a more formal exposition. A dedicated subsystem for output and logging
would also have been helpful during development { for instance, more granular log levels
would have made debugging easier, and should probably have been included from the start.
There is also some duplicated code in the construction of the various product systems { it
would have been more elegant to introduce a greater degree of abstraction to the process
of iterating over rules of automata, which would have helped with this. Thankfully, none
of these are fundamental problems and with careful use of regression testing it would be
straightforward to correct these imperfections.

The choice of an interactive command line as an interface to the system has been justi�ed by
the usability improvements this delivers. Since the nature of the logic entails that multiple
automata can be involved in a single formula, a persistent environment with named systems
and automata is essential to prevent confusion. Similarly, the encapsulation of functionality
into separate command objects proved a worthwhile decision { this contributes greatly to
the modularity and extensibility of the system as a whole.

7.3 Further work

While the system works well and demonstrates the potential usefulness of Extended CTL
as a logic for program veri�cation, there is much scope to improve upon this initial imple-
mentation.

7.3.1 Features

There are a number of features which could improve the usability of the system considerably,
if added.

Perhaps most obviously, it would be convenient to allow the non-regular portion of a formula
or model to be described by a context-free grammar in the input, say in Backus-Naur Form.
Currently it is necessary to explicitly enter states and rules for a pushdown automaton,
which can be unintuitive.

Similarly, since the algorithm for checking Release formulas only works with DPDAs, it
would be helpful for the system to automatically determinise PDAs when necessary.

7.3.2 Optimisation

Work by Lal and Reps [8] o�ers an alternative algorithm for reachability analysis of push-
down systems; it may be worth investigating whether their tool is able to improve upon the
performance of the wpds library in practice.

23

For systems with very large numbers of variables, it would be sensible to use Binary De-
cision Diagrams to represent valuations symbolically. This approach has been undertaken
successfully by such projects as Bebop [2] and NuSMV [4]; indeed it has been applied to
the checking of pushdown systems at least in the case of LTL [5].

7.3.3 Integration

Finally, there is much scope for better integration with other systems, to better allow
veri�cation of real programs. It would be possible, for example, to create an Eclipse plug-in
for automatically building a pushdown control ow graph from a source �le, and perhaps
checking a set of standard formulas against it.

Similarly, it is possible to use GCC to create control ow graphs of C++ code; tools for
checking these conveniently could be very useful.

8 Acknowledgements

I am very grateful to Stephan Kreutzer for acting as my supervisor for this project, in which
capacity he was most helpful.

I would also like to thank Matthew Hague for his help with searching for automata libraries
and general advice concerning PDSolver.

References

[1] R. Axelsson, M. Hague, S. Kreutzer, M. Lange, and M. Latte. Extended computation
tree logic. In Logic for Programming, Arti�cial Intelligence, and Reasoning, pages
67{81. Springer, 2010.

[2] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
SPIN Model Checking and Software Veri�cation, pages 113{130, 2000.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. CONCUR'97: Concurrency Theory, pages 135{150,
1997.

[4] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.
In Computer Aided Veri�cation, pages 241{268. Springer, 2002.

[5] J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs. In
Computer Aided Veri�cation, pages 324{336. Springer, 2001.

[6] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. E�cient al-
gorithms for model checking pushdown systems. In E. Allen Emerson and A. Prasad
Sistla, editors, Proceedings of CAV 2000, volume 1855 of Lecture Notes in Computer

Science, pages 232{247. Springer, July 2000.

24

[7] M. Hague and CHL Ong. Analysing mu-calculus properties of pushdown systems (tool
presentation). Submitted to SPIN, 2010.

[8] A. Lal and T. Reps. Improving pushdown system model checking. In Computer Aided

Veri�cation, pages 343{357. Springer, 2006.

[9] R.S. Mitra. Strategies for mainstream usage of formal veri�cation. In Proceedings of

the 45th annual Design Automation Conference, pages 800{805. ACM, 2008.

[10] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logics.
Journal of the ACM (JACM), 32(3):733{749, 1985.

[11] I. Walukiewicz. Pushdown processes: Games and model checking. In Computer Aided

Veri�cation, pages 62{74. Springer, 1996.

A User Manual

A.1 Compilation

If you wish to build MCECTL yourself, you will require the following:

CMake >= 2.8.2

Boost >= 1.43.0

GNU Bison >= 2.4.3

flex >= 2.5.35

GNU Readline >= 6.1.002

Earlier versions may work, but this has not been tested.

All other libraries used are provided with the source distribution. These include:

libfa >= 0.7.4 (part of the Augeas project)

wpds >= 16/05/2006 (available from the Institute of Formal Methods

in Computer Science, University of Stuttgart)

From the main directory, the following commands will build the system:

$ cmake .

$ make

This produces two executables: MCECTL-REPL, for using the system interactively, and
Test, which runs the Boost unit tests.

A.2 MCECTL-REPL

MCECTL-REPL takes two command line options.

--verbose If this flag is present, produce more detailed output

--file filename Load and execute commands from a file

Upon running MCECTL-REPL, a prompt will be displayed:

MCECTL >

25

at which commands in the MCECTL input language may be entered.

A.3 Input Language

The MCECTL input language is de�ned as follows. De�nitions are signalled by the keyword
for the type of data being de�ned, in all caps (e.g. PDS) followed by the actual de�nition,
in curly braces.

Other commands are in lower case and preceded by a colon. These include, for example,
checking a formula against a system.

DFA my_dfa f
STATE(my_state_1)

STATE(my_state_2)

STATE(*my_accepting_state)

ACTION(a : my_state_1 -> my_accepting_state)

g
Declare a finite automaton explicitly. * indicates a final state.

REGULAR my_regex f
a* b*

g
Declare a finite automaton by providing a regular expression.

PDA my_pda f
STATE (empty)

STATE (toast_ready)

STATE (*fulfilled)

ACTION (make_toast: empty[_] -> toast_ready[PUSH toast])

ACTION (eat_toast: toast_ready[toast] -> fulfilled[POP])

ACTION (make_and_eat: toast_ready[toast] -> toast_ready[REWRITE toast])

g
Declare a pushdown automaton. * indicates a final state.

LTS my_lts f
STATE (s1: p)

STATE (s2: q)

STATE (s3:)

ACTION (a: s1 -> s2)

ACTION (b: s2 -> s3)

g
Declare a labelled transition system.

PDS pds1 f

26

STATE(p1[_] :)

STATE(p1[s] :)

STATE(p2[_] :)

STATE(p2[s] : p)

ACTION(a: p1[_] -> p1[PUSH s])

ACTION(a: p1[s] -> p1[PUSH s])

ACTION(b: p2[_] -> p2[PUSH s])

ACTION(c: p1[s] -> p2[POP])

g
Declare a pushdown system.

FORMULA my_formula f
A((p & E(!q U[dfa1](r -> p))) U[dfa2] (q|A(0 R[dfa1] !EX r)))

g
Declare a formula. Formulas are input as follows:

0 true

1 false

p proposition

!formula negation

(f & g) conjunction

(f | g) disjunction

(f -> g) implication

E(f U[automaton] g) exist until

E(f R[automaton] g) exist release

A(f U[automaton] g) all until

A(f R[automaton] g) all release

EX f exist next

AX f all next

:load("input.ectl")

Load commands from the specified file. Tab-completion available.

:quit

End the session. (Also ctrl-D)

:check(my_formula, my_system)

Check which states of the system model the formula.

If the system is an LTS, any formula automata should be PDAs.

If the system is a PDS, the formula automata should be DFAs.

:show(my_formula)

:show(my_automaton)

:show(my_system)

27

Print a textual description of the named object.

:xshow(my_automaton)

:xshow(my_system)

Display a graphical representation of the named automaton or system.

This requires that GraphViz is installed, and that the `dot'

tool is present in the system PATH.

A.4 Conversion from JimpleToPDSolver output

To use the PDSolver integration script, simply pipe in the output from JimpleToPDSolver:

$ tools/JimpleToPDSolver "<ectl.Files: void main(java.lang.String[])>"

-pds -f jimple.out

$ scripts/convert.pl < jimple.out > files.ectl

This creates a pushdown system from the control ow of the ectl.Files Java program,
and stores the appropriate MCECTL input in files.ectl, ready to be checked.

$./MCECTL-REPL --file files.ectl

B Code Listings

In the following listings, please note that many of the less important classes (e.g. exceptions
and AST nodes) have been omitted for brevity. The full source code is available from the
author upon request.

28

